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Experimental investigation of three-dimensional 
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curved wings 
By V. BASKARANT, Y. G. PONTIKIST A N D  P. BRADSHAWll 

Department of Aeronautics, Imperial College of Science & Technology, London SW7 ZBY, UK 

(Received 27 July 1988 and in revised form 17 July 1989) 

Mean flow and turbulence measurements have been made in three-dimensional 
turbulent boundary layers in curved ducts, simulating adverse pressure gradients on 
two ‘infinite’ swept curved wing surfaces with concave and convex curvature 
respectively. The ratio of the initial boundary-layer thickness to the surface radius 
of curvature in both cases is approximately 0.01, the value used in the earlier two- 
dimensional turbulent boundary-layer studies on the effects of concave and convex 
curvature by Hoffmann, Muck & Bradshaw (1985) and Muck, Hoffmann & Bradshaw 
(1985) respectively. The pressure-driven crossflow has nearly the same streamwise 
distribution as in the ‘infinite’ swept flat-surface experiment of Bradshaw & 
Pontikos (1985), which used a similar duct. The results of the present study show 
that the coupled effects of mean flow three-dimensionality and prolonged mild 
surface curvature of either sign have rather a weak influence on the turbulence 
structure, unlike the significant influence of the above extra strain rates when 
applied individually. In  the concave case, the effect of the crossflow appears to 
oppose the destabilizing effect of curvature in addition to  suppressing spanwise wavy 
inhomogeneities I n  contrast, the weak combined influence of convex curvature and 
crossflow, both of which, separately, tend to attenuate turbulence, implies that the 
interaction between the two effects is grossly nonlinear. Implications of the present 
results for turbulence modelling are briefly discussed. 

1. Introduction 
Many common turbulent shear layers suffer from the effects of rates of strain 

additional to simple shearing, or from interaction with another turbulent flow field. 
A complex flow of this kind is a shear layer with a cross-stream mean shear, aW/ay, 
as an extra strain rate, in addition to the basic component, aU/ay; i t  is commonly 
known as a ‘three-dimensional boundary layer ’. Typical examples are the flow over 
a swept wing, flow in turbomachine boundary layers, and flow through arbitrarily 
curved ducts or passages. In this type of flow, the x-component of mean vorticity is 
nearly equal to the cross-stream shear, aW/ay (in the present paper we use y for the 
distance normal to the surface and z for the distance in the spanwise direction - see 
figure 1 - with V and W for the respective mean velocity components and Q for the 
resultant velocity magnitude). There is another type of three-dimensional flow, with 
imbedded vortices, such as in a wing-body junction, where i3Vla.z x aW/ay, and the 

t Present address : Aeronautical Research Laboratories, DSTO Salisbury, Australia. 
$ Present address : British Aerospace Dynamics, Hatfield, Herts, UK. 
11 Present address : Thermosciences Division, Mechanical Engineering Dept, Stanford University, 

Stanford, CA 94305, USA. 
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two contribute roughly equally to the x-component of mean vorticity: a more 
detailed account of this type is given in Bradshaw (1987). This paper deals with the 
former type of three-dimensional flow, particularly that over ‘infinite ’ swept wings?, 
in cases where longitudinal streamline curvature produces yet another extra strain- 
rate, aV/ax. Here ‘longitudinal’ is used, following Bushnell & McGinley (1989) to 
distinguish streamline curvature, as seen in spanwise view, from lateral curvature 
(seen in front view) or crossflow curvature (as seen in plan view). Crossflow or plan- 
view curvature is the essential feature of three-dimensional boundary layers, seen 
even on a flat surface. It is easy to distinguish plan-view curvature from that in any 
plane normal to the surface, but so little is understood about curvature effects in 
three-dimensional boundary layers that i t  is not clear which normal plane defines the 
curvature that affects the turbulence. The most plausible simple guess, used in the 
calculations presented below is the component in the plane of the resultant shear 
stress (-E, -=). Streamline curvature within the flow differs significantly from 
surface curvature if the rate of growth of the boundary layer is changing rapidly, but 
consideration of a local value a t  each y is simplistic, since curvature mainly affects 
the large eddies. In the present ‘infinite wing’ case, any choice for the effective 
curvature can be evaluated from the principal surface curvature (in the plane normal 
to the generators). Note that the crossflow extra strain rate, aW/ay, specifies 
streamwise mean vorticity, while the curvature extra strain rate, aV/ax, affects the 
spanwise mean vorticity. In  this paper, we address the combined effects of crossflow 
and streamline curvature on the turbulence structure. By ‘structure’ we mean the 
empirical information that normally links experiments and engineering calculation 
methods, where it appears as (allegedly constant) dimensionless parameters such as 
the ratio of shear stress to turbulent kinetic energy. 

The present investigation is one in a series of complex flows studied a t  Imperial 
College, and is specifically a sequel to  the study of Bradshaw & Pontikos (1985) on 
a three-dimensional turbulent boundary layer. This work in turn was a repeat and 
extension of the experimental work a t  the Netherlands NLR by van den Berg et al. 
(1975) and by Elsenaar & Boelsma (1974), on the flow in a duct simulating an 
‘infinite’ swept wing. In both cases the leading-edge sweep was 35”, and the ‘infinite’ 
swept conditions were simulated by shaping the sidewalls of a finite-width test 
section. The principal conclusion of the study of Bradshaw & Pontikos is that the 
turbulent activity in a three-dimensional boundary layer (as measured by the eddy 
viscosity or by the resultant shear stress/turbulent energy ratio) is considerably less 
than in two-dimensional boundary layers. I n  an earlier phase of the investigations 
into complex flows a t  Imperial College, the effect of mild prolonged longitudinal 
streamline curvature on two-dimensional boundary layers was studied in detail. 
Concave and convex curvature was considered by Hoffmann et al. (1985) and Muck 
et at. (1985) respectively. The surface radius of curvature was approximately 100 
times the initial boundary-layer thickness in both cases and the streamwise pressure 
gradient was nominally zero. Even such mild curvature, typical of aerofoils rather 
than turbomachine blades, can produce changes of the order of 10 % in skin-friction 
coefficient. The main conclusion of the above studies was that the responses of a two- 
dimensional boundary layer to convex and concave curvatures were different, even 
qualitatively. Concave curvature increases turbulent mixing and gives rise to  
Taylor-Gortler roll cells, and convex curvature suppresses turbulent activity. There 

t Over ‘infinite ’ swept wings, the generators and the isobars are all parallel : gradients along the 
generators are zero, which simplifies analysis, but the turbulence structure is still representative of 
general three-dimensional boundary layers. 
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are also several other investigations into the effects of curvature on two-dimensional 
boundary layers with radius of curvature of about 10 times the initial boundary- 
layer thickness (strong curvature), such as those reported by Gillis & Johnston (1983) 
on convex curvature and Barlow & Johnston (1988) on concave curvature. Strong 
curvature causes very large changes in turbulence structure, even in the inner part 
of the boundary layer. In the present case, curvature effects are expected to be most 
important in the outer layer where the eddies are larger, and we have not attempted 
to explore the near-wall region in detail a study of the near-wall region of a plane 
three-dimensional boundary layer using subminiature probes is long overdue. 

It was realized a t  the so-called Trondheim trials (see East 1975) that turbulence 
models for two-dimensional flows, when extended to three-dimensional boundary 
layers by plausible arguments based on the rotation of coordinates, may not 
reproduce experimental results. For instance, the isotropic eddy viscosity hypothesis 
does not predict the observed fact that the shear stress and mean velocity gradient 
vectors have different directions. The magnitude of the shear stress in the outer layer 
(y/S > 0.2) is also overpredicted by using the typical value for two-dimensional 
boundary layers (O.OlSSU,S*). It is by no means certain that the empirical formulae 
used to represent curvature effects in two-dimensional calculation methods would be 
applicable to three-dimensional shear flows. It is also not certain that the combined 
effects of mean flow three-dimensionality and longitudinal curvature are simply a 
superposition of the individual effects, since the response of a turbulent boundary 
layer to a given perturbation is often non-linear (Smits & Wood 1985). However, 
superposition implies a weak net effect of crossflow and concave curvature, while 
combined crossflow and convex curvature is expected to produce a large and 
significant decrease in the turbulence intensity. On the other hand, the totally 
different nature of the responses to concave and convex curvature found in the two- 
dimensional cases, suggests that the interaction in three-dimensional boundary 
layers may depend, even qualitatively, on the sign of curvature (i.e. concave or 
convex). In  that case, the response of a three-dimensional boundary layer may be 
totally different for concave or for convex curvature. Therefore, the net effect of 
combined crossflow and streamline curvature on the behaviour of a turbulent 
boundary layer is an open question and there is a need for investigation. Hence, the 
next logical step in the sequence of the above studies a t  Imperial College was to 
extend the three-dimensional shear-layer work to include curvature. Simulation of 
such a flow also contains features of a more general configuration such as a transonic 
aircraft wing, where the upper surface is convex and the rear lower surface is 
generally concave. The present study is intended partly to serve as a test case for 
prediction methods for general three-dimensional shear layers and partly to improve 
our physical understanding of curvature effects in three-dimensional boundary 
layers. 

The results of the present investigation show that the net effect of curvature and 
mean flow three-dimensionality on the turbulence structure is small, for mild 
curvature of either sign. In  the case of concave curvature, the weak net effect is 
consistent with the opposing nature of the individual extra strain rates and 
qualitatively implies superposition. An unexpected finding (Baskaran & Bradshaw 
1988) was that the spanwise wavy inhomogeneities (' Taylor-Gortler ' vortices or roll 
cells - see Tani 1962 and Barlow & Johnston 1988) that occur in the two-dimensional 
flow decayed as the crossflow increased in the three-dimensional case. The only 
forewarning of the decay came from the calculations of Hall (1984), which showed 
that in laminar three-dimensional boundary layers the inflectional crossflow 
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instability, whose eigenmode is an array of co-rotating longitudinal vortices, 
overwhelms the contra-rotating longitudinal vortices of Taylor-Gortler instability. 
However, Bradshaw & Pontikos found no evidence for the crossflow instability 
modes in their three-dimensional turbulent boundary layer. Certainly, the decay of 
the spanwise variations in the concave case simplifies interpretation. The combined 
effect of crossflow and convex curvature is also small, though the two effects 
individually reduce the turbulence intensity and might have been expected to 
produce a large reduction in combination. In  this case, the nonlinearity is obviously 
very strong. 

Calculations by the method of Bradshaw, Mizner & Unsworth (1976) for three- 
dimensional boundary layers were done for all three cases (plane, concave and 
convex). This is an extension of the method for two-dimensional shear layers 
developed by Bradshaw, Ferriss & Atwell (1967), using partial-differential ‘trans- 
port’ equations for -= and -= and avoiding eddy viscosity altogether. It is used 
here as a subject for criticism merely because it is a simple, easily-available stress- 
transport model: more modern models would probably behave similarly. It can 
accommodate empirical corrections for curvature and other extra strain rates, which 
give good predictions of the effects of streamline curvature in two-dimensional 
boundary layers. Bradshaw (197 1) demonstrated the capabilities and limitations of 
this method for three-dimensional boundary layers using the then available 
experiments for ‘infinite’ swept flows. The method predicts a skin friction 
distribution in fair agreement with the measurements in the concave case, but gives 
a poor prediction in the convex case. Since the method gives poor results for the plane 
case, owing to its failure to crossflow effects on the structure, the good agreement in 
concave case is a coincidence. Nevertheless, the pattern of discrepancies is consistent 
with the qualitative deduction from the experimental results, that the effects of 
crossflow and of concave curvature can be roughly superposed, but that there is a 
strong interaction between crossflow and convex curvature. 

2. Apparatus and techniques 
The experimental rigs, shown in figure 1, were generally similar to the ducted 

configuration used by Bradshaw & Pontikos, but with curved floors on which the 
boundary layers were studied, The rigs were attached to the exit of the blower tunnel 
used in the previous study. I n  each case, the duct consisted of a flat initial section 
of dimensions 762 mm x 127 mm, followed by a 35” swept section with a curved floor, 
together with an adjustable roof and curved sidewalls. The initial laminar boundary 
layer was removed by means of a 6 mm suction slot attached to an independent 
blower. The slot was swept a t  35” to form the equivalent of the leading edge of a 
swept wing. A 50 mm wide swept sandpaper trip located immediately after the slot 
was used to promote transition and thicken the boundary layer. At the end of the 
front flat section the thickness of the turbulent boundary layer was 20 mm, with a 
momentum thickness Reynolds number of about 4000, in both cases. The radius of 
curvature of the swept curved floor was 2540 mm, giving about the same ratio of 
initial boundary-layer thickness to surface radius of curvature as that  used in the 
earlier two-dimensional studies on mild streamline curvature a t  Imperial College 
(this ratio will be referred to as the ‘curvature parameter’ hereafter). At the start of 
curvature, the curvature parameter is 0.008. Note that the ‘wall curvature 
perturbation parameter ’, vAk/U,,, is only 0.04 x lo-* (Ak  is the step change in surface 
curvature, v is the kinematic viscosity and U,, is the friction velocity a t  the start of 



Experimental investigation of three-dimensional turbulent boundary layers 101 

+ 
+ 
+ 
+ 
+ 
+ 
4- 
+ 

m l- o\ 

k 
X 

X 

X 

k 

m 
24 
0 
0 
0 
0 
0 
0 
0 
0 

I- m 
f 

m 
6 

8" 
0 

0 
0 0 O D  O ' I  

x Q, 

c c s 

m 
0 4a g 
B 



102 V. Baskaran, Y.  G .  Pontikis and P. Bradshaw 

0.3 

0.2 

C V W  

0.1 

0 

-0.1 

0 

I-. 
-/?/ - - - 

,/40 
I 

- 
/)' p 

- 

- 
,/y / 

/ o o  _ _ _ _  0 

.*- 0 

Exi i 
Start ol' curvature -----_-./I 

I I I I I I I I I 

curvature), and the above definition of curvature parameter is still a meaningful 
representation of curvature effects, in contrast to strongly curved cases where the 
growth of an internal boundary layer confuses the effects of curvature (Baskaran, 
Smits & Joubert 1987). The curved sidewalls were adjusted by trial and error to 
simulate ' infinite ' swept flow, and the static pressure distributions along the 
generators (referred to as the 'spanwise' direction) are shown in figure 2 (a, b)  for the 
concave and convex curvature rigs respectively. Detailed measurements of skin- 
friction coefficient as a function of x and z in the concave case are given by Baskaran 
& Bradshaw (1988) and show that crossflow from the wall on the negative-x side does 
not reach the region where the main measurements were made. The flexible roofs of 
the curved sections were adjusted so that the surface pressure distributions normal 
to the generators (referred to as ' chordwise ') approximated that in the ' infinite ' 
swept flat-wing experiments, as shown in figure 3. At the last measurement station 
the upper and lower wall boundary layers were separated by about 110mm of 
potential flow - roughly 1.5 to 2 times the test-wall boundary-layer thickness. The 
pressure gradient nominally starts a t  the same chordwise station as the curvature. 
The chordwise distributions of static pressure (and other quantities where shown) are 
matched with respect to the reference static pressure location. The external flow 
angle with respect to the tunnel axis (the x-axis in figure 1)  at the boundary-layer 
edge is shown in figure 4 for the flat surface and curved flow cases. All measurements 
in the present study were conducted at a nominal tunnel free-stream velocity of 
33 m/s, corresponding to a Reynolds number Urer/v of 2.2 x los per metre. The duct rig 
simulated a wing with a chord of 2 m, at a tiny fraction of the cost of testing a real 
wing in a large tunnel: the disadvantage is that, because of the method of 
construction, flow visualization is virtually impossible. 

Some of the measurement procedures were slightly different in the two cases. In 
the concave case, the direction of the surface shear stress vector was measured using 
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12 - I 

x. (m) 
FIQURE 4. Direction of the edge streamline with respect to tunnel axis. - - - - ,  Bradshaw & 

Pontikos (1985); --, NLR data; ---, concave curvature; -0-, convex curvature. 

a 0.7 mm diameter three-hole surface yawmeter in non-null mode. The surface 
yawmeter was calibrated for yaw angle in the two-dimensional laminar boundary 
layer ahead of the suction slot. The magnitude of the surface shear stress was 
measured with a 1.1 mm diameter Preston tube aligned to the direction of surface 
shear stress using the calibration of Pate1 (1965). This assumes that the law of the 
wall is the same as in two-dimensional flow: for a discussion see $3.1. A three-hole 
probe of 0.89 mm diameter was used for mean velocity vector measurements in the 
boundary layer in non-null mode. This probe was calibrated for yaw angle, static 
pressure and total pressure in the undisturbed tunnel free stream using a procedure 
recommended by Bryer & Paiikhurst (1971). In  the convex case, the magnitude of 
the surface shear stress was measured with a Preston tube of 1.1 mm diameter, and 
a 0.89 mm three-hole probe, both aligned with the surface-flow direction. The same 
three-hole probe was nulled in the boundary layer for resultant mean velocity 
measurements, so that the surface flow direction could be obtained by extrapolation 
of the crossflow-angle profiles. In  both cases, the static pressure distribution across 
the boundary layer was measured with the three-hole probe. 

Turbulence measurements were made using crossed hot-wire probes. The probes 
were home-made with platinum core Wollaston wire of 5 pm diameter, soft soldered 
to the prongs and etched to give an active length of about 1.2 mm. (This implies poor 
spatial resolution at wall distances less than about 3mm,  and we did not make 
turbulence measurements in this region.) Melbourne University type constant 
temperature anemometers were used, with a prefixed resistance ratio of 1.8. The 
wires were statically calibrated before every profile. The effective wire angles were 
determined through a yaw calibration (Bradshaw 1971), giving the best fit to the 
cosine cooling law. All measurements were conducted with the axis of the probe 
parallel to the tunnel axis, as in the earlier ' infinite ' swept flat wing experiments. The 
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measurements included all six components of the Reynolds stress tensor, and all the 
triple products that appear in the transport equations for the Reynolds stress 
components. Some selected fourth-order quantitites were also obtained. The 
correlations between v and w fluctuations were obtained by rolling the probe about 
its axis into +45O planes, so that the wires responded to ( v f w ) / d 2 .  The cross- 
stream shear stress, -%, and the associated triple products, viz. v2w, .uw2 and G, 
were deduced as the sums and differences of the quantities corresponding to these 
two planes, as explained by Baskaran & Bradshaw (1987). All turbulence 
measurements in the concave case were obtained on-line using a sample/hold unit, 
a Tecmar/Labmaster 12 bit analog-to-digital converter and an IBM-PC ‘portable ’ 
micro-computer programmed in Microsoft Fortran. Twenty thousand samples per 
wire per roll plane were collected a t  each point in the boundary layer at a sampling 
frequency of 200 Hz. In  the convex rig experiments, the hot-wire signals from the 
four roll planes were recorded on analog tape using an SEL 3000 tape recorder and 
later digitized for batch processing on the College Cyber computers, including the 
linearizations of hot-wire calibrations. The absolute accuracy of hot-wire measure- 
ments is always difficult to assess: the probes and techniques used in the two 
experiments described here (and in the measurement of Bradshaw & Pontikos) were 
very similar, and comparisons between the different flows therefore depend only on 
repeatability. Repeatability checks for the hot-wire data are given in detail in 
Baskaran & Bradshaw (1987). At the last measurement station near the peak normal 
stress location, where the crossflow with respect to the hot-wire probe is the largest, 
the normal stress components were repeatable to 5%, the shear stress component, 
- G, to 15 % and the shear stress components, - vw and -=, to 30 YO. 

_ _ -  

- 

3. Results 
3.1. Concave curvature 

The chordwise distributions of the skin friction coefficient, C, (=  2(&,/&e)2) and the 
relative surface crossflow angle, ,4,( = +,,,-ge) for the ‘infinite’ swept three- 
dimensional boundary layer with concave curvature are shown in figure 5.  The 
decrease in the earlier part of the flow is principally due to the adverse pressure 
gradient : the boundary-layer thickness 6 increases by a factor of about 4 over the 
length of the flow, so that two-dimensional flat-plate skin friction would decrease by 
about 25 Yo. In the above relations, &, and +, are the magnitude and direction of the 
friction velocity along the wall streamline and the suffix ‘e’ refers to the edge 
streamline just outside the boundary layer. In two-dimensional curved-wall 
boundary kyers, it  is common t o  use the potential wall velocity, Up,(= 
Uref( - Cpw)*, instead of the edge velocity, whose magnitude in the present case is 
not much different, as we shall see later. Also shown in the same figure are the 
distributions predicted by the method of Bradshaw et al. (1976) with and without an 
empirical curvature correction (based on two-dimensional data) : the performance of 
the method in the different cases will be discussed below. The spanwise skin-friction 
distributions over the ‘infinite’ swept concave wing, discussed in Baskaran & 
Bradshaw (1988), show clearly the decay of wavy inhomogenities that normally exist 
in two-dimensional concave wall boundary layers owing to Taylor-Gortler roll cells. 

The static pressure distributions across the boundary layer are shown in figure 6. 
(The pressure-coefficient difference across a boundary layer with 6/R x 0.01 is 
expected to be less than 0.02.) The surface pressure coefficients, inferred from figure 
3 for the different chordwise stations, are also plotted in figure 6:  the distributions 
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FIGURE 5. Chordwise skin friction and crossflow distributions over the concave wing. 0, aligned 
Preston tube (1.1 mm dia); 0, law of the wall; 0 ,  3-hole surface yawmeter (0.7 mm dia.); 
calculation of Bradshaw, Mizner & Unsworth (1976) : -, with curvature correction ; - - -, without 
curvature correction. 

close to the surface (about the first 7 data points) are obviously inaccurate, owing to 
wall proximity effects on the response of the three-hold probe, and should not be 
taken seriously. If these points are ignored, the static pressure distributions in the 
boundary layer extrapolate fairly well to the values a t  the surface, giving confidence 
in the yawmeter measurements (which are well-conditioned for flow angle and total 
pressure but yield the static pressure as the small difference of two large quantities). 
The magnitude of the resultant mean velocity vector, non-dimensionalized by the 
local potential velocity, QP, and its direction relative t o  the local edge streamline are 
shown in figure 7. The potential velocity was inferred using the total pressure outside 
the boundary layer and the local static pressure. The profiles of the resultant mean 
velocity magnitude are unremarkable. At the last station (2, = 1839 mm), the 
pressure gradient tends to relax and the increase in the mean velocity gradient is 
consistent with the expected trend in the inner region. Again owing to the wall 
proximity effect on the three-hole probe, the flow angles near the wall are 
overestimated, apparently by as much as 2 O ,  and this discrepancy also appears in the 
flow angle profiles of Bradshaw & Pontikos. The wall interference effect on the 
behaviour of three-hole yaw probes deserves scrutiny in both laminar and turbulent 
boundary layers, for both null and non-null applicationst. 

The mean flow profiles are plotted in the wall coordinate system for the resultant 
velocity in figure 8. In  these plots, the conventional displacement correction was 
applied to the wall distance by adding 15% of the probe diameter. In  three- 

t Bttskaran & Bradshaw (1987) present calibrations for the three-hole probe at  different distances 
from the wall in a laminar boundary layer. The mean flow data presented here are based on the free- 
stream calibration so that the comparisons with the convex and flat surface cases are valid. 
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FIGURE 6. Static pressure distributions across the boundary layer over the concave wing. 
+, from figure 3. 

dimensional turbulent boundary layers with mild crossflow, the validity of the two 
dimensional law of the wall for the velocity magnitude was verified by Pierce & 
Zimmerman (1973), and Fernholz & Vagt (1981). (Note that the pressure measured 
by a Preston tube is independent of yaw angle over a range of at least & loo, so that, 
if aligned with the flow direction at or near the surface, the tube will respond to the 
velocity magnitude and therefore give acceptable answers as long as the law of the 
wall holds in the above sense.) Bradshaw & Pontikos found that the region of validity 
of the two-dimensional logarithmic law with constants 0.41 and 5.2 (de Brederode & 
Bradshaw 1974) decreased with an increase in the crossflow. In  the concave case, the 
friction velocity was inferred by plotting the resultant mean velocity on a Clauser 
chart as in the flat-surface case. The points suspected to  be affected by wall 
interference (based on figure 6) were discarded in the Clauser fits. The dip below the 
logarithmic law usually observed in two-dimensional concave wall boundary layers 
is absent. The outer limit of the logarithmic region increases slightly as the crossflow 
increases in the present concave case. Johnston (1970) also observed a similar 
increase in the outer limit for the logarithmic region in his three-dimensional 
boundary layer induced by a swept forward-facing step, where the streamline 
curvature was concave. The wake component initially increases owing to the adverse 
pressure gradient, before decreasing a t  the last station owing to a favourable pressure 
gradient, as expected. We have also inferred the direction of the friction velocity 



Experimental investigation of three-dimensional turbulent boundary layers 107 

0.4 I , , , , ,  1 

0 10 20 30 40 50 60 70 80 90 

12 

10 

(deg.1 8 
(4 - 4.) 

6 

4 A + X  

2 

0 

-2 
0 10 20 30 40 50 60 70 80 90 

Y (mm) 

FIQURE 7. Resultant mean velocity profiles over the concave wing. (a)  Magnitude. 
( b )  Direction relative to the edge streamline. 
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FIGURE 8. Resultant mean velocity profiles in wall coordinates for the concave wing. 

2, a:, a:* 4 1  0 2 2  

(mm) (mm) (mm) (mm) (mm) HI, H22 

1.53 - 591 2.62 -0.024 1.71 - 
921 4.12 -0.391 2.767 -0.01 1.49 - 

1229 8.58 -2.414 5.604 -0.228 1.53 10.61 
1533 11.33 -4.124 7.46 -0.428 1.52 9.64 
1839 12.96 -4.864 9.087 -0.456 1.43 10.67 

TABLE 1.  Integral parameters for the ' infinite ' swept concave wing (evaluated in coordinates 
aligned to the edge streamline: negative values are a consequence of crossflow in the positive-z 
direction) 

from the law of the wall using an iterative procedure, where the law of the wall was 
fitted to the velocity component in the directions of the tunnel axis and the wall 
streamline. Normally, large changes in the local flow direction in a three-dimensional 
turbulent boundary layer occur within the viscous sublayer, whose outer edge 
corresponds to the apex in the polar triangular plot for the mean flow. In the present 
case, however, the change in the flow direction is small between the inner (apex) and 
the outer limits of the logarithmic region (about 4' over the range of data points - - - ..,. .. . . .  .. . .  . . .  -. . . . . .  -. .. * .. .. . actually fitted) and the method is viable. 'I'he initial direction ot the wall shear stress 
vector was taken as arcos (UJQ,) where U, and Q, are the friction velocities obtained 
with the component of resultant velocity in the direction of the tunnel axis and the 
resultant velocity itself. Then the resultant mean velocity vector was resolved in the 
direction of the wall shear stress vector and the logarithmic law fitted. This gives the 
new value for the direction of the wall streamline. The procedure is repeated till 
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the successive iterations are within half a per cent. The distribution of the wall 
streamline direction is compared with the independent measurements in figure 5 .  

The relations for the integral parameters such as the displacement thickness, 
momentum thickness and the shape factor were adopted from Cooke & Hall (1962) 
with the constant potential velocity, U,, replaced by the local potential velocity, Qp. 
Integral parameters were evaluated in a coordinate system aligned with the edge 
streamline and are given in table 1 for the concave wing. The shape parameter, Hll, 
in the stream direction exhibits little change and is closely the same as that reported 
by Bradshaw & Pontilos on a flat surface. Both adverse pressure gradient and 
destabilizing curvature, individually tend to increase the shape factor in two- 
dimensional flows. However, the favourable pressure gradient at the end of the rig 
causes the shape factor to decrease. The other shape factor, H,,, remains 
approximately constant at  the last three stations as the surface crossflow angle 
relative to the local external stream, /3,, itself remains nearly constant. 

The six components of the Reynolds stress tensor for the chordwise stations are 
shown in figure 9. All these stresses are referred to the coordinates aligned to the 
tunnel axis, so that the changes can be considered as a spanwise perturbation of an 
initially two-dimensional flow. The components are non-dimensionalized with respect 
to the reference velocity, Urefr in order to identify the absolute changes. The normal 
stress profiles are qualitatively similar to those reported by Bradshaw & Pontikos : 
the profiles contain a peak which moves away from the wall as the crossflow 
increases, and their changes are unremarkable. The shear stress component - UV 
decreases only slightly relative to the undisturbed flow, unlike the huge decrease 
(about 50 % in the maximum value) reported by Bradshaw & Pontikos for the same 
crossflow range. The -G profiles behave differently, in that the multipIe peaks 
reported by Bradshaw & Pontikos are absent, and our profiles of -uW change sign 
relatively closer to the wall. The profiles of -% at the last two stations are not 
wholly reliable, as indicated by the disagreement between the independently 
measured wall values and the first -G data point. This is presumably due to the 
crossflow relative to the probe being large, even though this does not seem to affect 
the -G profiles: the distributions near the wall tend to extrapolate to the wall 
values fairly well, and the shear stress gradient is consistent with the pressure 
gradient close to the wall. Because the crossflow in all the experiments was roughly 
the same, the errors due to misalignment of the crosswire probe (aligned to x-axis) 
with respect to the local flow should not in principle jeopardize comparisons between 
the flat, concave and convex cases. 

3.2. Convex curvature 
The chordwise distributions of the skin friction coefficient and the relative surface 
crossflow angle for the convex case are shown in figure 10. Calculations by the 
method of Bradshaw et al. (1976) with and without the two-dimensional curvature 
correction are shown on the same figure. Unlike the concave case, the calculations do 
not agree well with the data. 

The static pressure distributions across the boundary layer, shown in figure 11, 
once again extrapolate reasonably well to the surface values. The profiles of the 
resultant mean velocity vector are shown in figure 12, and the increase in the mean 
velocity gradient is consistent with the decreasing pressure gradient at  the last 
station. The profile at  the last station also exhibits a pronounced inflection typical 
of a two-dimensional mean flow profile approaching separation, even though 
‘separation ’, in three-dimensional boundary layers, does not require the resultant 
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FIQURE 12. Resultant mean velocity profiles over the convex wing. (a) Magnitude. 
(b) Direction relative to the edge streamline. 

584 2.48 -0.008 1.59 - 1.56 - 

867 3.99 0.163 2.55 -0.003 1.57 - 

1201 9.61 -2.16 5.6 -0.198 1.72 10.93 
1477 15.71 -4.13 8.65 -0.473 1.82 8.74 
1642 16.94 -5.34 9.96 -0.72 1.7 7.42 

TABLE 2. Integral parameters for the ‘infinite’ swept convex wing (evaluated in coordinates 
aligned to the edge streamline). 

shear stress to fall to zero. The flow angles close to the wall are suspected to be 
overestimates, owing to wall interference effects on the three-hole probe. The values 
at the wall were not measured independently and the ‘surface’ crossflow data in 
figure 10 are actually the first data points from the respective profiles shown in figure 
12 (b ) .  The integral parameters for the convex case are given in table 2. The increase 
in the shape factor H I ,  indicates that the mean flow profiles are considerably distorted 
and H,, gradually decreases as the relative surface crossflow increases. 

The non-dimensionalized Reynolds stress components are shown in figure 13 for 
the convex case at  different chordwise stations. As in the other cases, the profiles 
develop peaks and the distance of the peak from the wall increases as the flow moves 
downstream. 2 behaves qualitatively similarly, while both 7 and 2 show 
considerable differences between the wall and the location of maxima. The shear 
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- 
stress component - uv shows qualitatively much the same trend with downstream 
distance as in the profiles over the concave wing. This is unexpected, because in two- 
dimensional flows, -G is very sensitive to  the sign of curvature. The profiles of -vW 
again behave qualitatively similarly, but remain largely negative over most of the 
boundary-layer thickness. The profiles of -= are qualitatively similar to those 
corresponding to the flat surface and concave cases. 

4. Discussion 
4.1. Interaction of crossjbw and mild streamline curvature 

The distributions of the structure parameter, a,, represented in three-dimensional 
turbulent boundary layers as the ratio of the resultant shear stress _ - -  magnitude, 7 = 
([( -&)'+ ( -E)2]1") to twice the turbulent kinetic energy, ?( = u2+v2+w2) ,  are 
shown in figure 14 for both concave and convex curvature. Both these quantities are 
independent of rotation about the y-axis. Like most turbulence structure parameters, 
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a, is not strongly affected by pressure gradient, so the small differences in pressure 
gradient between the two cases can be ignored in discussion. In  both cases, the 
changes in a, with crossflow, say with pw, are much smaller than the significant 
reduction of the structure parameter (0.07) over nearly the same range of crossflow 
in the flat surface case of Bradshaw & Pontikos. Note that the NLR experiments 
reported by van den Berg et al. and Elsenaar & Boelsma did not exhibit such a large 
reduction in a,, even though the surface crossflow is three times that of Bradshaw & 
Pontikos. This appears to be due to the difference in the individual behaviour of both 
-uv and p. In  the flow of Bradshaw & Pontikos -uV decreased strongly, while 
remained unchanged with an increase in the crossflow. In the NLR experiments, 
both ?and -G actually increased with crossflow from the values in the undisturbed 
flow: for the same range of crossflow (p, = 0"- 1 7 O ) ,  q2/qi x 7 and -uv/-uvo x 6, 
both at y/S x 0.5, where suffix ' 0 '  refers to the values in the undisturbed flow. The 
increase in 2 in the NLR flow is predominant& due to a large rise in w". Anderson 
& Eaton (1987) also observed increases in both q2 and -=, including a large increase 
in 2, in their pressure driven three-dimensional boundary layers. The precise reason 
for the difference in the behaviour of turbulent kinetic energy and the streamwise 
component of the shear stress in the case of Bradshaw & Pontikos is not clear. 
Nevertheless, the structure parameter, a,, which is dimensionless and hence a 
meaningful quantity to compare between different experiments, decreases in all the 
above mentioned flat-surface cases. 

The smaller change of a, in the three-dimensional concave case is consistent with 
superposition, in that mean flow three-dimensionality reduces the structure 
parameter, while concave curvature in two-dimensional flows increases it. In the 
convex case, the superposition argument would predict large changes in a, since 
convex curvature in two-dimensional flow reduces it. The experimental results in the 
convex case contradict this argument and imply that there is a strong interaction 
between the effects of crossflow and of convex streamline curvature. (This suggests 
that  the superposition argument may not be trustworthy in general, even in the case 
of concave curvature.) These differences in the interaction of the effects of curvature 
and mean-flow three-dimensionality are further demonstrated below, using other 
quantities such as the transport velocities of turbulent kinetic energy, 6, and of the 
shear stress component, V,,, both being known to be sensitive to  curvature in two 
dimensions. The y-component transport velocities are defined, after neglecting the 
unmeasurable pressure fluctuations, as 

- 

~- _ -  

- ~ 

U2V + 2 + w22) UV2 v,= , v,, = =. 
q2 UV 

Profiles of V, and V,, are shown in figures 15 and 16 respectively, for the concave and 
convex cases. Profiles of the individual triple products in the above relations are 
given in Baskaran & Bradshaw (1987) for concave curvature and in Baskaran, 
Pontikis & Bradshaw (1987) for convex curvature. The changes in the inner part of 
the layer, including the negative values for the transport velocities, are consistent 
with the distributions usually seen in adverse pressure gradient (East, Sawyer & 
Nash 1979). The distributions of V, and V,, in the outer portions of the layer show 
little change in either case, demonstrating that transport of energy and stress are not 
altered by the combined action of crossflow and curvature, unlike the decrease found 
in the flat-surface case. Considering the enhancement by concave curvature, and the 
attenuation by convex curvature, of turbulent transport in two-dimensional 
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boundary layers, the small changes in the transport velocities in curved three- 
dimensional boundary layers support the apparent superposition of crossflow and 
curvature effects in the case of a concave wing and a nonlinear interaction between 
the two effects in the convex wing boundary layer. 

4.2. Implications for turbulence modelling 
In two-dimensional boundary layers, the directions of the shear stress vector and the 
mean velocity gradient vector are necessarily coincident. Turbulence models which 
extend the eddy viscosity hypothesis for two-dimensional flows to three-dimensional 
boundary layers usually assume that the eddy viscosity is isotropic, specifically that 
the components along and across the local mean flow are equal. The eddy viscosity 
components along and across the local mean flow, v,, and v,,, are defined 
respectively as, 

vsm = -G/laQ/aylCOS#gm> 
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and their ratio is denoted as 

Ne = Vcm/Vsm = tan$,m/tan$gm, 
where the shear stress components are also referred to the coordinates aligned to the 
local mean flow, as denoted by the suffix 'm'. $gm and $ym are respectively the 
directions of the resultant mean velocity gradient and resultant shear stress vectors 
with respect to the local mean flow. Many experiments on three-dimensional shear 
layers on a flat surface (e.g. Johnston 1976), however, have shown that the directions 
of the velocity gradient and shear stress vectors are different (N, =l= 1), contradicting 
the assumption of isotropic eddy viscosity for closure purposes. Nevertheless, by far 
the majority of the prediction methods used in industry and government laboratories 
use this assumption. It is not even meaningful to use the local mean flow direction 
as an axis, since turbulence properties and velocity gradients are translationally 
invariant (i.e. unaltered by adding an arbitrary mean velocity) whereas the flow 
direction is not; we simply follow common usage. The ratio of the eddy viscosity 
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components is shown in figure 17 for the two curved flow cases. N ,  < 1 over the 
concave wing, indicating that the shear stress lags behind the velocity gradient as in 
the flat-wing case of Bradshaw & Pontikos, and in the convex case N ,  > 1 which 
corresponds to a lead of shear stress over the velocity gradient. In both cases, an 
isotropic eddy viscosity is inadequate to predict the flow. This implication also holds 
for an isotropic mixing length. The tendency of N, to approach unity in both cases 
a t  the last measurement station is due to the relaxation of pressure gradient from 
adverse to favourable, and is a genuine indication that the three-dimensional 
boundary layer is pressure driven. 

The calculation of Bradshaw, Mizner & Unsworth as applied to the present curved- 
wing flows needs some comment. Using this method in the case of Bradshaw & 
Pontikos, the skin friction coefficient was overestimated by 20 YO. Poor prediction of 
C, is not surprising since the method does not allow for the change in the structure 
due to crossflow : for example, it uses the two-dimensional empirical value of 0.15 for 
the ratio of the shear stress to the turbulent kinetic energy. Therefore the good 
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agreement with the present concave-wing data could be a coincidence, even though 
the calculation produces results consistent with the idea of superposition of crossflow 
and concave curvature effects. The nonlinear interaction between the two effects, 
and poor agreement with calculation, in the convex case certainly supports the 
finding that concave and convex effects are qualitatively different in two-dimensional 
curved wall boundary layers. More experiments on three-dimensional boundary 
layers involving streamline curvature are needed to substantiate the difference in the 
behaviour depending on the sense of curvature 

5. Conclusions 
Measurements were made in three-dimensional layers in test rigs simulating 

‘infinite’ swept curved wings with concave and convex surface curvature. The 
chordwise crossflow distributions were simulated to be approximately the same as in 
the ‘infinite’ flat wing of Bradshaw & Pontikos (1985). The curvature parameter, 
6/R,  is typical of values used in the earlier two-dimensional curved flow studies of 
Hoffmann et al. (1985) with concave curvature, and of Muck et al. (1985) with convex 
curvature. Combined crossflow and mild curvature of either sign have little net effect 
on the turbulence structure, in contrast to the large influence of each when applied 
individually. This suggests that the stabilizing effect of crossflow opposes the 
destabilizing influence of concave curvature. I n  contrast, the weak influence of 
convex curvature and crossflow together suggests a nonlinear interaction. In  both 
curved flow cases, the different directions for the mean velocity gradient vector and 
the shear stress vector imply that hypotheses based on isotropic eddy viscosity or 
mixing length are inadequate. The calculation method of Bradshaw, Mizner & 
Unsworth, a simple shear-stress transport model, gives good predictions in the case 
of concave curvature, but agreement in the flat-surface case is poor and in the 
convex-curvature case it is even poorer. The method does not account for the effects 
of crossflow on the turbulence structure so that the absolute level of agreement is 
expectedly poor, but the trend supports the superposition principle for concave 
surfaces. More experiments are needed on curved three-dimensional boundary layers 
of either sign, with different values for the radius of curvature, to confirm and to 
extend the findings of the present experiments. 
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